The expression earth-sheltering is a generic term, with the general meaning: building design in which soil plays an integral part.

A building can be described as earth-sheltered if its external envelope is in contact with a thermally significant volume of soil or substrate (where “thermally significant” means making a functional contribution to the thermal effectiveness of the building in question.)

Earth-sheltered buildings consist of one or more of three types: earth-covered, earth-bunded, and subterranean. An earth-covered building is one where the thermally effective element is placed solely on the roof, but is more usually a continuation of the earth-bunding at the unexposed elevations of the building. An earth-bunded building is one where the thermally significant element insulates one or more of the sheltered elevations of the building. The bunding can be partial or total. A subterranean building is one where the thermally significant element insulates all elevations of the building, leaving only the roof exposed; or, if the building is built into an incline, it may be that the roof is covered and only one elevation is left exposed.


The benefits of earth sheltering are numerous. They include: taking advantage of the earth as a thermal mass, offering extra protection from the natural elements, energy savings, providing substantial privacy, efficient use of land in urban settings, shelters have low maintenance requirements, and earth sheltering commonly takes advantage of passive solar building design.

The Earth’s mass absorbs and retains heat. Over time, this heat is released to surrounding areas, such as an earth shelter. Because of the high density of the earth, change in the earth’s temperature occurs slowly. This is known as ‘thermal lag.’ Because of this principle, the earth provides a fairly constant temperature for the underground shelters, even when the outdoor temperature undergoes great fluctuation. In most of the United States, the average temperature of the earth once below the frost line is between 55 and 57 degrees Fahrenheit (13 to 14 degrees Celsius). Frost line depths vary from region to region. In the USA frost lines can range from just under the surface to more than 40 inches. Thus, at the base of a deep earth berm, the house is heated against an exterior temperature gradient of perhaps ten to fifteen degrees, instead of against a steeper temperature grade where air is on the outside of the wall instead of earth. During the summer, the temperature gradient helps to cool the house.

The reduction of air infiltration within an earth shelter can be highly profitable. Because three walls of the structure are mainly surrounded by earth, very little surface area is exposed to the outside air. This alleviates the problem of warm air escaping the house through gaps around windows and door. Furthermore, the earth walls protect against cold winter winds which might otherwise penetrate these gaps. However, this can also become a potential indoor air quality problem. Healthy air circulation is key.

As a result of the increased thermal mass of the structure, the thermal lag of the earth, the protection against unwanted air infiltration and the combined use of passive solar techniques, the need for extra heating and cooling is minimal. Therefore, there is a drastic reduction in energy consumption required for the home compared to homes of typical construction.

Earth shelters also provide privacy from neighbours, as well as soundproofing. The ground provides acoustic protection against outside noise. This can be a major benefit in urban areas or near highways. In urban areas, another benefit of underground sheltering is the efficient use of land. Many houses can sit below grade without spoiling the habitat above ground. Each site can contain both a house and a lawn/garden.