Landscape and site planning

The site planning for an earth sheltered building is an integral part of the overall design; investigating the landscape of a potential building site is crucial. There are many factors to assess when surveying a site for underground construction. The topography, regional climate, vegetation, water table and soil type of varying landscapes all play dynamic roles in the design and application of earth shelters.


On land that is relatively flat, a fully recessed house with an open courtyard is the most appropriate design. On a sloping site, the house is set right into the hill. The slope will determine the location of the window wall; a south-facing exposed wall is the most practical in the Northern hemisphere (and north-facing in the Southern hemisphere) due to solar benefits. The most practical house design in the tropics (and with equal advantage in both hemispheres) is that the two shorter walls on the ends be exposed, one facing east and the other facing west.

Regional climate

Depending on the region and site selected for earth sheltered construction, the benefits and objectives of the earth shelter construction vary. For cool and temperate climates, objectives consist of retaining winter heat, avoiding infiltration, receiving winter sun, using thermal mass, shading and ventilating during the summer, and avoiding winter winds and cold pockets. For hot, arid climates objectives include maximizing humidity, providing summer shade, maximizing summer air movement, and retaining winter heat. For hot, humid climates objectives include avoiding summer humidity, providing summer ventilation, and retaining winter heat.

Regions with extreme daily and seasonal temperatures emphasize the value of earth as a thermal mass. In this way, earth sheltering is most effective in regions with high cooling and heating needs, and high temperature differentials. In regions such as the south eastern United States, earth sheltering may need additional care in maintenance and construction due to condensation problems in regard to the high humidity. The ground temperature of the region may be too high to permit earth cooling if temperatures fluctuate only slightly from day to night. Preferably, there should be adequate winter solar radiation, and sufficient means for natural ventilation. Wind is a critical aspect to evaluate during site planning, for reasons regarding wind chill and heat loss, as well as ventilation of the shelter. In the Northern Hemisphere, south facing slopes tend to avoid cold winter winds typically blown in from the north. Fully recessed shelters also offer adequate protection against these harsh winds. However, atria within the structure have the ability to cause minor turbulence depending on the size. In the summer, it is helpful to take advantage of the prevailing winds. Because of the limited window arrangement in most earth shelters, and the resistance to air infiltration, the air within a structure can become stagnant if proper ventilation is not provided. By making use of the wind, natural ventilation can occur without the use of fans or other active systems. Knowing the direction, and intensity, of seasonal winds is vital in promoting cross ventilation. Vents are commonly placed in the roof of bermed or fully recessed shelters to achieve this effect.


The plant cover of the landscape is another important factor. Adding plants can be both positive and negative. Nearby trees may be valuable in wet climates because their roots remove water. However a prospective builder should know what types of trees are in the area and how large and rapidly they tend to grow, due to possible solar-potential compromise with their growth. Vegetation can provide a windbreak for houses exposed to winter winds. The growth of small vegetation, especially those with deep roots, also helps in the prevention of erosion, on the house and in the surrounding site.

Soil and drainage

The soil type is one of the most essential factors during site planning. The soil needs to provide adequate bearing capacity and drainage, and help to retain heat. With respects to drainage, the most suitable type of soil for earth sheltering is a mixture of sand and gravel. Well graded gravels have a large bearing capacity (about 8,000 pounds per square foot), excellent drainage and a low frost heave potential. Sand and clay can be susceptible to erosion. Clay soils, while least susceptible to erosion, often do not allow for proper drainage, and have a higher potential for frost heaves. Clay soils are more susceptible to thermal shrinking and expanding. Being aware of the moisture content of the soil and the fluctuation of that content throughout the year will help prevent potential heating problems. Frost heaves can also be problematic in some soil. Fine grain soils retain moisture the best and are most susceptible to heaving. A few ways to protect against capillary action responsible for frost heaves are placing foundations below the freezing zone or insulating ground surface around shallow footings, replacement of frost sensitive soils with granular material, and interrupting capillary draw of moisture by putting a drainage layer of coarser material in the existing soil.

Water can cause potential damage to earth shelters if it ponds around the shelter. Avoiding sites with a high water table is crucial. Drainage, both surface and subsurface, must be properly dealt with. Waterproofing applied to the building is essential.

Atrium designs have an increased risk of flooding, so the surrounding land should slope away from the structure on all sides. A drain pipe at the perimeter of the roof edge can help collect and remove additional water. For bermed homes, an interceptor drain at the crest of the berm along the edge of the roof top is recommended. An interceptor drainage swale in the middle of the berm is also helpful or the back of the berm can be terraced with retaining walls. On sloping sites runoff may cause problems. A drainage swale or gully can be built to divert water around the house, or a gravel filled trench with a drain tile can be installed along with footing drains.

Soil stability should also be considered, especially when evaluating a sloping site. These slopes may be inherently stable when left alone, but cutting into them can greatly compromise their structural stability. Retaining walls and backfills may have to be constructed to hold up the slope prior to shelter construction.